
Active Control of Wind-Tunnel Model
Aeroelastic Response

Using Neural Networks
Robert C . Scott*

NASA Langley Research Center, Hampton, VA 23681

Under a joint research and development effort conducted by the National Aeronautics
and Space Administration and The Boeing Company (formerly McDonnell Douglas) three
neural-network based control systems were developed and tested. The control systems were
experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dy-
namics Tunnel. One system used a neural network to schedule flutter suppression control laws,
another employed a neural network in a predictive control scheme, and the third employed
a neural network in an inverse model control scheme. All three of these control schemes
successfully suppressed flutter to or near the limits of the testing apparatus, and represent
the first experimental applications of neural networks to flutter suppression. This paper will
summarize the findings of this project.

Keywords: neural network, adaptive control, aeroelasticity, flutter suppression

Introduction
CTIVE control of aeroelastic phenomena will be- A come more prevalent on future flight vehicles. One

of the key issues in gaining acceptance of such systems
is reliability. Systems that can reliably adapt to sensor
and actuator failures or plant changes will improve sys-
tem reliability. Since neural networks can be trained to
model dynamic systems, their use has been suggested
for adaptive control and many studies proposing a va-
riety of control system architectures have been studied.
Some common types of algorithms include model refer-
ence control where the neural network is used to model
the plant and inverse control where the neural network is
used to model the inverse of the plant. Studies to inves-
tigate the aeronautical applications of neural networks
have been much more limited. References 1, 2, and 3
describe analytical studies where neural networks were
applied to flight controls in either fixed wing or rotorcraft
applications. These studies have focused on utilizing
neural networks to achieve improvements in trajectory
tracking. Studies to investigate the application of neural
networks to controlling aeroelastic response (flutter and
gust load alleviation, for example) have, however, been
even more limited. The purpose of the present research
is to investigate the use of neural networks for controlling
aeroelastic response.

The work described in this paper is part of the Adap-
tive Neural Control of Aeroelastic Response (ANCAR)
project. ANCAR was a joint research and development

*Research Engineer, Aeroelasticity Branch, Structures and Ma-
terials Competency.

effort conducted by the National Aeronautics and Space
Administration, Langley Research 'Center and The Boe-
ing Company (formerly McDonnell Douglas) under a
Memorandum of Agreement. The goal of the program
was to develop and demonstrate neural-network based
adaptive control systems using the Benchmark Active
Controls Technology (BACT) wind-tunnel model. The
ANCAR program consisted of two phases. Phase I was
the development and demonstration of a neural net-
work gain scheduled flutter suppression system. Under
Phase 11, two adaptive neural-network based control sys-
tems were to be developed and demonstrated. These
systems used predictive control and inverse model con-
trol methodologies. This paper will summarize all the
accomplishments of the ANCAR project; however, the
majority of the paper will focus on the neural-network
based inverse model system which has not previously
been reported.

The work presented in this paper was an exploratory
study. Additional research is required to determine the
merits of using neural networks for aeroelastic control.
In addition to the neural-network based control systems,
there were several other control systems tested using the
BACT wind-tunnel model. These control systems in-
clude those described in references 4 and 5. The control
systems described in these papers were designed using
classical or modern methods. While the performance of
these control systems was not directly compared with
the neural-network based control systems, it was appar-
ent that they were significantly more robust than either
the neural predictive or inverse model control systems.
The neural gain scheduled system is based on classical

control law design and its performance was qualitatively
similar to the systems in references 4 and 5.

Apparatus
Transonic Dynamics Tunnel

Wind-tunnel testing was conducted in the NASA Lan-
gley Transonic Dynamics Tunnel (TDT).' The TDT is
a single-return variable-density transonic wind tunnel.
The slotted test section is 16 ft by 16 ft square with
cropped corners. The speed and pressure are indepen-
dently controllable over a range of Mach number from 0.0
to 1.2 (unblocked), and a range of stagnation pressures
from near zero to one atmosphere. Either air or a heavy
gas can be used as the test medium. The heavy gas used
in these wind-tunnel tests was R-12, but the TDT has
since been modified to use R134a as the heavy gas. The
TDT is also equipped with quick-opening bypass valves
which can be activated to rapidly reduce test-section dy-
namic pressure and Mach number when flutter occurs.
The combinations of large scale, high speed, high density,
variable pressure, and the bypass-valve system make the
TDT ideally suited for aeroelastic testing.

Wind-Tunnel Model
The BACT wind-tunnel model is a rigid, rectangu-

lar wing with an NACA 0012 airfoil section. It is
equipped with a trailing-edge (TE) control surface and
upper- and lower-surface spoilers, all independently con-
trollable. The model is attached to a flexible mount
system, the Pitch And Plunge Apparatus (PAPA), that
allows both pitch and plunge degrees-of-freedom. An
image of the model mounted in the TDT and a sepa-
rate image showing only the model and mount system
are shown in figure 1. The model is extensively instru-
mented with pressure transducers and accelerometers to
measure surface pressures and model dynamic response,
and the mount system is instrumented with strain gauges
to measure normal force and pitching moment. Parame-
ters which could be varied during the test include Mach
number, dynamic pressure, model angle-of-attack, and
control surface deflection. Reference 7 contains a more
detailed description of this wind-tunnel model.

Neural Networks
Neural networks have been studied for many years in

a variety of fields. These fields include speech and image
recognition, credit and insurance policy evaluation, and
trajectory control to name a few. They have also been
studied extensively for use in controlling dynamic sys-
tems. The MATLAB Neural Network Toolbox Manual8
provides an excellent overview of neural network appli-
cations with many references. While numerous control
system architectures and network types have been in-
vestigated, this section of the paper will provide a brief

Fig. 1 BACT wind-tunnel model.

Input
Vector Neuron

+bi

R
1 fNonlinea+ ai=tanh(Ep.w-+bi)

j=1 J 11

Fig. 2
neuron.

Neural network computational element or

summary of only the neural networks applied in this pa-
per.

The name neural network comes from the fact that the
networks emulate the structure of the brain. In biological
nervous systems, the output of one neuron is connected
to many other neurons. It is these connections that de-
termine the function of the network. In practice, neural
networks are composed of many computational elements
or neurons operating in parallel. The general structure
of an individual neuron is shown in figure 2. The func-
tion of each neuron is to sum the weighted inputs (wij)

and the bias (b j) and process this sum through a trans-
fer function (f). The transfer functions considered in
this study will be limited to the two shown in figure 2:
a linear transfer function or a sigmoid transfer function
(tanh). The use of a tanh or tan-sigmoid transfer func-
tion allows the modeling of nonlinear effects.

Two or more neurons can be used to form a layer and
one or more layers forms a neural network. An example
of the network structure used in this paper is shown in
figure 3. This network consists of an input vector and
two layers of neurons, a hidden layer and an output layer.

SPIE PAPER 3991-30, MARCH 2000

Input output
Vector Hidden Layer Layer

Fig. 3 Neural network with one hidden layer.

Typically the output layer uses linear transfer functions
and the hidden layer uses linear or tan-sigmoid transfer
functions. This network structure is the simplest form of
multilayer feedforward network. More hidden layers can
be used, but no more than one hidden layer was used in
this paper. Given sufficient neurons on the hidden layer,
this type of network can approximate most functions ar-
bitrarily well.

Neural networks must be trained prior to use as pre-
dictive models. Training is a common term in the field
of neural networks and simply refers to the process by
which the network weights and biases are selected. The
training process begins by selecting or acquiring train-
ing data, a set of input and output data for the plant or
function to be approximated with the network. During
the training process the weights and biases are adjusted
until the error between the training data output and the
network output is minimized. There are several meth-
ods or algorithms for adjusting the network weights and
biases. A common training method, and the one used
in this paper, is backpropagation. Backpropogation is
a gradient descent optimization algorithm that can be
used on multilayer networks as long as the neurons have
differentiable transfer functions.

Gain Scheduler
This section of the paper will summarize the imple-

mentation and findings of the neural network gain sched-
uled flutter suppression system described in reference 9.
The objective of this system was to use a neural net-
work to schedule flutter suppression control laws. The
approach taken in this study was to use a series of state-
space models of the BACT wind-tunnel model to design
classical single input single output (SISO) flutter sup-
pression control laws. The state-space models were gen-
erated using the Integrated Structures, Aerodynamics,
and Controls (ISAC) code." The state-space models all
used the same structural and aerodynamic models with
Mach number (M) and dynamic pressure (4) being var-
ied. In all, fifty six state-space models were used where
Mach number varied from 0.3 to 0.9 and dynamic pres-

sure varied from 75 to 250 psf. These models were used
to design a fixed-gain control law and to design a series
of control laws optimized to minimize accelerometer out-
put for each combination of M and q. A neural network
was used to schedule the series of 56 optimized control
laws.

Fixed-Gain Control Law
The fixed-gain feedback control law was designed to

stabilize and minimize the wing response over the entire
range of the state-space models. A washout filter was
included in the compensation to eliminate any drift due
to bias errors in the accelerometers. Root-locus pole and
zero placement methods were used to design the fixed-
gain robust feedback control law given below.

s(s2 + 12s + 520)
s4 + 27s3 + 491s2 + 4515s + 13050

Neural-Network Scheduled Control Laws
For the neural-network scheduled control laws, the

control law described above was tailored for the pole-zero
dynamics of each state-space model. Fifty-six custom de-
signs were generated for the various M and q condition
state-space models. All of the resulting control laws had
the same order numerator (3 zeros) and denominator (4
poles) as the robust fixed-gain control law. The general
form of the these control laws is given below:

53 + 0282 + a1s

s4 + b3s3 + bzs2 + bls + bo
k

The neural network, shown in the lower portion of fig-
ure 4, was trained using backpropagation to output the
two numerator coefficients, the four denominator coef-
ficients, and the overall gain as functions of M and q.
The control law parameters used to train the neural net-
work were in the continuous domain, rather than the
discrete domain. This was required because continuous-
domain coefficients vary smoothly as a function of M
and q and do not require the high numerical precision of
discrete-domain control law coefficients. The neural net-
work outputs were transformed into the discrete domain
before being transferred to the digital controller.

Experimental Results
The control system architecture that was implemented

in the 1995 BACT wind-tunnel test is shown in figure 4.
The trained neural network and Tustin (continuous-to-
discrete) transformation was implemented on a Macin-
tosh computer. As M and q were varied, the Macintosh
computer transferred control laws to the real time sys-
tem. The Active Digital Controller (ADC)ll was used as
the real-time digital control system operating at a rate of
200 Hz. The fixed-gain control law was also implemented
on the ADC.

SPIE PAPER 3991-30. MARCH 2000

TE Accelerometer
Signal TE Control

Surface
Signal

< >

Discrete State-Space
Control Law

Sun Real Time Digital

200

170

160
4 - t Dynamic 150

Pressure,

,045 I
Pressure I

I
I

I
I Dynamic
I
I
I

.040

,035

L - - - - - - - - - - - - - - - - - - - A

Fig. 4 Neural network gain scheduling system ar-
chitecture.

TE Accel. .030
RMS, g's .0*5

.020

.015

.010

.005

0

The control systems were tested along four constant

TDT. These H-lines and the BACT model open-loop
Each H-line is

total-pressure lines which define test paths within the

flutter boundary are shown in figure 5.

110

100
0.50 0.60 0.70 0.80 0.90 1.00

Mach Number

0

0
-
- .. 0 00
-

0 0 0 0
0

-
0 om^^ 0 0 -

0 0 o o -
e o -

-
-

I

TE Control
Surface Signal _ _ _ _ _ _ - - -

I
I
I
I - u(n:

TE Accelerometer Signal, y(n)

I
I

, -\.. ' I J \

\
uln-ol

Fig. 7 Neural predictive control system architecture

a linear single layer network or neural-network plant
model. As depicted in this figure, the NPC system im-
plemented in this study used a linear plant model to
capture the input/output dynamics of the BACT model.
This predictive plant model is then utilized in an on-line
optimization scheme to select the optimal control val-
ues for each control cycle. This system used a sample
rate of 100 Hz, and each cycle had a duration of 0.01
seconds. The plant model can initially be trained by
exciting the actuators, measuring the sensor response,
and training the plant model. This model can then be
updated on-line to handle with changing conditions and
time-varying plant dynamics. The plant model training
portion of this system is performed in parallel with the
closed-loop portion and is depicted by the error feedback
to the plant model in figure 7.

The method implemented for flutter suppression in-
volves minimizing a cost function. The cost function,
or performance index, is typically a quadratic function
of the regulation/tracking error and required control in-
put power. consequently, NPC is an optimal controller
in the same sense that the Linear Quadratic Regulator
(LQR) is optimal. The advantage of NPC over LQR lies
in its capability to be easily extended to nonlinear sys-
tems and to explicitly account for plant constraints in
real time.

A step-by-step description of the NPC algorithm is
given below:

1. Generate a reference trajectory, yd(n), which rep-
resents the desired value of the future plant output
(yd(n) = O for flutter suppression).

2. Predict the future plant output, yp(n+l) , using the
plant model. This prediction is based on the current
and past values of the plant input and output, u(n)
and y(n), and a new trialinput value, uk(n) . For the

BACT model u is the TE control surface command
and y is the TE accelerometer signal.

3. Evaluate the performance of the trial input value
according to a performance index based on the cost
of regulation/tracking error and the required control
input power.

4. Repeat steps 2 and 3 with an optimization scheme
until the termination criteria (desired performance
or iteration limit) is achieved.

5. Output the trial control value selected by the op-
timization process to the plant. This is where the
switch in figure 7 is moved from the down position
to the up position so that the TE control surface
command can be sent to the physical model. After
the signal is sent the switch is returned to the down
position for the next control cycle.

6. If on-line learning is engaged, update the plant
model using a set of input/output data and an ap-
propriate training algorithm.

7. Repeat the entire process for each control cycle.

The inputs to the plant model consist of time-delayed
samples of the plant inputs, u (n) , and outputs, y(n), as
shown in figure 7. For nonlinear control applications, a
multi-layer neural network architecture with backpropa-
gation training can be used. For linear plants, a linear
autoregressive moving average (ARMA) model is used.
The NPC architecture was implemented using a Pentium
60 MHz PC with a plug-in Alacron neural accelerator
board and analog input/output boards. The Pentium
host CPU is responsible for all NPC computations and
data transfer to the input/output and neural accelera-
tor boards. The neural accelerator board performs the
on-line model adaptation which occurs in parallel with
the host CPU control loop computations. Due to several
limitations of this hardware and software, only the linear
ARMA plant models were considered in this study.

Simulation Results
The simulation studies were performed to design the

appropriate plant model architecture, evaluate the ro-
bustness of the controller, and validate the real time
control software. Successful adaptation and control was
demonstrated across the range of simulated wind tunnel
conditions, with the NPC system running at a rate of
100 Hz. One representative simulation time history is il-
lustrated in figure 8 for an open-loop unstable condition,
M=0.75 and q=175 psf. Starting with an untrained net-
work, a white noise excitation signal was sent to the TE
control surface for four seconds and the accelerometer
response recorded providing 400 data points for neural

S P I E PAPER 3991-30, MARCH 2000

NN I Control & I Control &I Control & I Control
NN, I Excitation I &NN

I I Learning I ILeaming
Learning I Excitaztion I

0.5

TE Accel.
Signal, g's 0

-0.5

I I I
I

Control 4ctivated I I

-1.0 - I
I

-1.5 I II I I I II I I
0 2 4 6 8 10 12 14 16 18 20

Time, sec.

NPC simulation time history. Fig. 8

network learning. The learning then occurred during
the next 2.7 seconds, allowing control to be activated at
about 6.7 seconds. As shown in the figure, from t=3.9 to
t=6.7, the wing response grew steadily due to open-loop
flutter until the controller was initiated for flutter sup-
pression. Once the system was activated, learning and
control occur simultaneously, allowing model updates to
occur every 6.7 seconds. The length of this time interval
is determined by the speed of the processors, the control
cycle rate, and the amount of data needed for accurate
plant modeling.

Experimental Results

The NPC system was tested at several M and q condi-
tions along two H-lines. Testing began at the lower end
of the H-line, in the open-loop stable region, with plant
model learning activated. Dynamic pressure and Mach
number were then gradually increased to conditions well
beyond the open-loop flutter boundary. The continuous
adaption of the plant model, which was one goal of the
project, was not reliable enough to use for long periods
of time. Periodically, the plant model generated by the
on-line learning algorithm was not accurate enough and
resulted in an unstable control system. Additional anal-
ysis is necessary to isolate the root of the problem, but
it may be related to the level of random noise used to
excite the wing dynamics, the amount of data used for
training, or tuning of the performance index used by the
NPC system.

After several unsuccessful attempts to operate in a
fully adaptive mode, it was decided to activate learning
only when a new model was required. Thus, for each
H-line the plant model was generated at the low end
of the H-line at an open-loop stable condition, and then
learning was turned off, thereby freezing the plant model
parameters. This arrangement was used to successfully
suppress flutter along two H-lines as shown in figure 9.

200 0

190 1 " 7

160
Dynamic
Pressure, 150

+ Flutter Points
0 0 Neural Predictive Control

110

100
0.60 0.70 0.80 0.90 1 .oo

Mach Number

Fig. 9 NPC wind-tunnel data points.

Inverse Model Control
This section of the paper will provide a detailed de-

scription of the application of neural networks and in-
verse modelling to the control of aeroelastic response.

Architecture

The inverse modelling control architecture used in this
study borrows elements from several proposed control
schemes. This section of the paper will describe the
relevant aspects of these systems and the system ar-
chitecture implemented here. Inverse modelling control
has generally been applied to trajectory tracking ap-
plications. References 13, 14, and 15 describe several
approaches to inverse modelling control and introduce
several elements applicable to the present problem. In
general, the key assumption in inverse model control is
that an unknown plant can be made to track an input
command signal when this signal is applied to a con-
troller whose transfer function approximates the inverse
of the plant's transfer function. An adaptive control
system can be created by applying an adaptive inverse
modelling process to the plant. A simple form of such
a system is depicted in figure 10. The upper portion
of this figure shows the training procedure. Here the
arrow passing through the network box indicates the
feedback of the error for training of the network using
back propagation. The lower portion of figure 10 shows
the implementation of the inverse model. In practice
the adaptive inverse model will be continuously updated.
Thus, no direct feedback is used, except that the plant
output is monitored and utilized to adapt the parameters
of the controller.

The type of system just described is only suitable for
minimum phase systems. The introduction of a time
delay on the plant input used in the inverse modelling
process allows one to obtain an approximate delayed in-

6 OF 12

Input I 4 I Response I

A I

Y
a) Inverse modelling process.

Desired
Response Response

Network Plant

b) Control process.

Fig. 10
gram.

Generic inverse model control block dia-

verse model to both minimum and non-minimum phase
plants. Reference 14 also suggests using a prefilter on the
plant input signal. Both the time delay and prefilter con-
cepts will be employed in this study to generate inverse
plant models. As the aeroelastic control application in-
vestigated here is not a trajectory following problem,
the actual implementation of the inverse model in the
control system will be different than that proposed by
Widrow.13-15 The implementation of the inverse model
in a closed-loop system is discussed next.

The inverse model can take numerous forms including
the one used here, a neural network. The implemen-
tation of the neural-network inverse model used in this
study is similar to that proposed in reference 16. Unlike
many other studies, reference 16 suggests a relatively
simple implementation where the neural network inputs
and outputs are connected directly to the plant like a
standard feedback controller. The present implementa-
tion will use this approach. However, unlike reference
16 which used perceptron neural networks trained us-
ing genetic algorithms, the present application will use
a two-layer feed-forward neural network trained using
back-propagation.

The present implementation of the inverse modelling
approach is shown in figure 11. The upper part of the fig-
ure shows the acquisition of training data and the off-line
network training procedure. The input to the network
is one of the BACT model’s accelerometer signals. As
indicated on the figure, the input to the network is made
up of the current and delayed values of this signal. The
number of time-delayed inputs used can be varied. Also,
as discussed earlier, the model input signal used to train
the network is delayed and filtered prior to used. The
data acquisition was performed using the ADCll sam-
pling at 200 Hz. The network training was performed
off-line using the MATLAB software. The time delay

Prefilter

a) Data acquisition and controller training.

TE Control

_ -

b) Controller implementation.

Fig. 11 Inverse model control system architecture.

(A) was an integer number of time steps. The prefilter
was implemented using the MATLAB FILTFILT func-
tion. This function digitally filters the data in both the
forward and reverse directions. The result has zero phase
distortion with a magnitude modified by the square of
the filter’s magnitude response. The prefilter is tailored
to have a peak magnitude near the frequency of the
physical phenomenon to be controlled. For flutter sup-
pression, the flutter frequency is used.

The lower portion of figure 11 shows the implementa-
tion of a trained network. Here the network is inserted
in the control loop with the the BACT model’s TE con-
trol surface command as the output of the network. This
control system also was implemented on the ADC” sam-
pling at 200 Hz. The gain, IC, on the output signal could
be varied on-line.

The following steps summarize the operation of this
system.

1. Send excitation signal to the BACT model recording
both the excitation (TE control surface command)
and the model response (accelerometer signal).

2. Train the network using delayed and filtered excita-
tion signal and BACT accelerometer response time
history.

3. Implement trained network on the real-time system.

7 OF 1 2

SPIE PAPER 3991-30. MARCH 2000

LSS &In

Fig. 12
block diagram.

Inverse model control system simulation

Prior to implementation of this system, many parame-
ters were explored using the simulation model discussed
in the next section.

Simulation Model

The simulation model developed by W a s ~ a k ~ ~ ~ ' ~ was
used in this study. The model was formed by combin-
ing the equations of motion for the BACT wind-tunnel
model with actuator models and a model of wind-tunnel
turbulence. Wherever possible, the numerical model pa-
rameters were determined experimentally. The mass and
inertia parameters were obtained by measuring the mass,
stiffness, and damping properties of the BACT flexible
mount. The static aerodynamic parameters were deter-
mined from experimental data when the BACT model
was mounted to a five-degree-of-freedom balance.' The
dynamic derivatives were obtained computationally us-
ing 1SAC.l' The numerical values for the static and
dynamic stability and control derivatives are only valid
at a single Mach number of 0.77; however, the dynamic
pressure for the model could be changed. The analyt-
ical flutter boundary for this simulation model occurs
a t a dynamic pressure of 150.8 psf. Figure 12 shows
the version of the simulation model used in this study.
The BACT equations of motion and actuator models
developed by Waszak are contained in the appropriately
labeled blocks. The turbulence model in the upper left
portion of the model is based on a Dryden spectrum
with parameters tuned to match power spectrum data
obtained in the TDT. The other elements of the block
diagram were added for this investigation.

The primary changes to the model developed by
Waszak included the addition of the neural-network con-
trol blocks and numerous other gain blocks. The control
system studies in this investigation were SISO so the gain
blocks were included to allow the same SIMULINKl'

'

model to be used for either accelerometer signal (trail-
ing edge or leading edge) or either control surface (TE
control surface of upper spoiler) without changing the
model. For instance, if the gains on the upper spoiler
control signal and the gain on the leading edge ac-
celerometer signal are both zero, the resulting system
would be SISO utilizing the TE control surface and the
TE accelerometer. This was the configuration considered
in this investigation. In addition, excitation generators
and their associated gains were introduced for obtaining
training data and for studying the effects of noise and
turbulence.

Several parameters that could also be varied but are
not shown in figure 12, include the number of hidden
layers on the neural network and the number of time-
delayed network inputs. The hidden layer could be either
linear or nonlinear.

Parametric Variations
This section of the paper will present results from sev-

eral parametric variations using the simulation model
described above. First, a few words about how these
parametric studies were performed. The primary objec-
tive of this system is flutter suppression and the per-
formance of the control system will be evaluated at a
dynamic pressure where the model is open-loop unsta-
ble, 175 psf. The data for training the network must be
obtained initially at a dynamic pressure were the model
is open-loop stable. The initial training was obtained
from an open-loop simulation using a dynamic pressure
of 133 psf where a pseudo-random noise (PPN) or lin-
ear sign sweep (LSS) input was used to drive the TE
control surface. Both excitation signals had frequency
content between 0 and 12 Hz. The prefilter for the flutter
suppression applications was selected to have peak mag-
nitude of unity in the vicinity of the flutter frequency of
the BACT model. The prefilter used for flutter suppres-
sion control laws is shown below.

-431. IS
s3 + 1 9 . 6 ~ ~ + 811.6s + 2529.8

It has a peak magnitude of unity at 4 Hz and significant
washout below and rolloff above this target frequency.

In all the parametric results presented, the RMS val-
ues of the TE accelerometer and the T E control sur-
face will be plotted against the parameter being varied.
Lower is better and values off the scale of the plot indi-
cate that the system is not stable. The value of A, the
number of time delays used in training the network, is
a very important parameter and will often be used as
the independent variable in these plots. The nominal
simulation parameters are as follows

Network Controller:
Hidden Nodes = 6

8 OF 12

SPIE PAPER 3991-30, MARCH 2000

Accel
RMS, 0.4

g s 0.2
kJ7, 0 With Prefilter

2o 15 L

I I I I
0 5 10 15 20 '50 35 40 45 50 55

Number of time delays, A

Fig. 13 Comparison of linear inverse model control
system response with and without the use of the pre-
filter.

Time Delayed Inputs = 25
A = 25

Training Data Simulation:
q = 133.0 psf
Turbulence Gain = 3.0
Simulation Time = 30 seconds
T E Control Surface Excitation = PPN

Controller Evaluation Simulation:
q =175.0 psf
Turbulence Gain = 3.0
Simulation Time = 30 seconds
Control Law Gain, IC = 2.0

The first issue to be explored is the use of the pre-
filter. Figure 13 shows a comparison of linear controller
performance where the linear network controllers were
trained with and without the prefilter. The compar-
ison shows that a controller that will suppress flutter
can be obtained without using the prefilter, but it will
have poor robustness properties. Typically, an accept-
able flutter suppression control system will have control
surface RMS values significantly below unity. Without
the prefilter, only one value of A achieves acceptable
control system performance.

The next parametric variation considered a linear net-
work where A and the turbulence gain were varied. The
turbulence gain was varied for the open-loop simulations
where the training data was acquired. A gain of three
was used to evaluate the closed-loop performance. This
data is shown in figure 14. From these data, it is ap-
parent that a time delay between 25 and 35 achieves the
best performance. It can also be observed that moder-
ate levels of turbulence improve the performance of the
network controllers.

Degrees lo
TE RMS,

0 5 10 15 20 25 30 35 40 45 50 55
Number of time delays, A

Fig. 14
formance for varying A and turbulence gain.

Linear network inverse model controller per-

, I I

0

15

0 With Prefilter

TE RMS,
Degrees l o

5

0 5 10 15 20 25 30 35 40 45 50 55
Number of time delays, A

Fig. 15 Comparison of nonlinear inverse model con-
trol system response with and without the use of the
prefilter.

The use of a nonlinear network (sigmoid transfer func-
tion on the hidden layer) is now considered. Figure 15
shows a comparison between nonlinear networks trained
with and without a prefilter as a function of A. An im-
portant feature of the nonlinear result is that while the
system may become unstable, the control command is
limited by the saturation of the sigmoid transfer func-
tions. Otherwise, the linear and nonlinear network con-
trollers achieve similar levels of performance. To further
explore the use of nonlinear network controllers, the tur-
bulence gain and prefilter were varied. Figure 16 shows
a comparison of the performance of nonlinear network
controllers where the training data was obtained using
various values of the turbulence gain. As with the lin-
ear case, moderate levels of turbulence were found to be
desirable.

The next parameter to be considered in this study

n .
U

0 5 10 15 20 25 30 35 40 45 50 55
Number of time delays, A

Nonlinear network inverse model controller Fig. 16
performance for varying A and turbulence gain.

1 .o
0.8

TE Accel. 0.6
RMS, g’s o.4

0.2

0

20

Degrees l o
TE RMS, I 0 Linear, q=175 psf

0 Nonlinear, q=175 psf
0 Linear, q=195 psf
A Nonlinear, q=195 psf

0 10 20 30 40 50 60
Time Delayed Network Inputs

Fig. 17 Inverse model controller performance as a
function of the number of delayed network inputs.
A=25.

was the number of delayed inputs to use on the network
controller. Figure 17 shows a comparison of performance
of a linear and nonlinear network where the number of
time-delayed inputs was varied from 0 to 60. The value of
A in these analyses was 25. The systems were evaluated
at two dynamic pressures, 175 psf and 195 psf. At 175
psf dynamic pressure, the performance of the system was
insensitive to the number of time delays, but at 195 psf
dynamic pressure, a minimum value of 15 time delays
was required.

The final parameter considered is the excitation type
used to obtain the training data. So far only a PPN
excitation has been used. A comparison of PPN results
with those obtained using a LSS excitation is presented
in figure 18 for both linear and nonlinear controllers.
Both types of excitations yield controllers with similar
performance, but the PPN excitation appears to have a
slight advantage over the LSS excitation.

0 Linear, PPN
0 Nonlinear, PPN
0 Linear, LSS
A Nonlinear, LSS I I

TE RMS,
Degrees

Number of time delays, A

Fig. 18
trollers trained using PPN and LSS excitation.

Linear and nonlinear inverse model con-

This completes the discussion on the inverse model
control parametric studies. Note that not all param-
eters were varied. Future studies should consider the
use of the leading accelerometer sensor and the use of
the spoiler. The amplitude of the control surface excita-
tion was not varied, and sensor noise was not considered
at all. The only control systems considered were SISO,
yet the simulation model can be modified to use both
leading-edge and trailing-edge accelerometers as input
signals to the controller. Finally, a truly adaptive sys-
tem needs to continually re-acquire data and train new
inverse model controllers as the plant changes. This was
not considered in the present study.

Experimental Results

This section of the paper describes experimental re-
sults for application of inverse modelling control to the
BACT model during the 1996 wind-tunnel test. The
networks used during this wind-tunnel test all had 25
time-delayed inputs to the network and 6 nodes on the
hidden layer. These controllers were SISO with the in-
put coming from the TE accelerometer and the output
being sent to the TE control surface. Unless otherwise
noted, the prefilter used is the same as that described in
the preceding subsection. Due to time constraints only
a limited number of parameter variations were explored
experiment ally.

Two inverse model flutter suppression control systems
were demonstrated. Figure 19 shows a portion of the
TDT operating envelope with the BACT open-loop flut-
ter boundary superimposed. The two inverse model
control systems are designated A and B. System A was
trained using data acquired at conditions well below
the open-loop flutter boundary (M=0.65, q=133 psf).

